Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Mark E. Light, ${ }^{\text {a* }}$ Michael B. Hursthouse, ${ }^{\text {a }}$ Michael A. Beckett ${ }^{\text {b }}$ and David S. Brassington ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, and ${ }^{\mathbf{b}}$ Chemistry Department, University of Wales, Bangor LL57 2UW, Wales

Correspondence e-mail: light@soton.ac.uk

Key indicators

Single-crystal X-ray study

$T=120 \mathrm{~K}$

Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.025$
$w R$ factor $=0.064$
Data-to-parameter ratio $=14.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

A mixed-halogen tricarbonylmanganese(I) complex: fac-[$\left.\mathrm{MnBr}_{0.3} \mathrm{Cl}_{0.7}\left\{\mathrm{Ph}_{2} \mathbf{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{3}\right]$

Crystals of the mixed halogen complex, fac-(bromo/chloro)-tricarbonyl[1,3-bis(diphenylphosphino)propane]manganese(I), fac- $\left[\mathrm{MnBr}_{0.3} \mathrm{Cl}_{0.7}\left(\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{P}_{2}\right)(\mathrm{CO})_{3}\right]$, were obtained from a prolonged recrystallization attempt of $\left[\mathrm{MnBr}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3^{-}}\right.\right.$ $\left.\left.\mathrm{PPh}_{2}\right\}(\mathrm{CO})_{3}\right]$ from $\mathrm{CHCl}_{3} /$ hexane solution at 263 K . Common coordinates are found for all but the halogen atoms in the disordered structure, but the $\mathrm{Mn}-X$ vectors differ by 3.5 (5) ${ }^{\circ}$ and the $M-X$ bond lengths differ by 0.10 (1) \AA.

Comment

In a recent report, we described the synthesis and spectroscopic characterization of mer- or fac- $\left[\mathrm{MnBr} L_{2}(\mathrm{CO})_{3}\right](L=$ triorganophosphine) complexes with three compounds $\{L=$ $\frac{1}{2} \mathrm{dppf}$ [dppf $=1,1^{\prime}$-bis(diphenylphosphino)ferrocene], $\frac{1}{2}$ dppe [dppe $=1,2$-bis(diphenylphosphino) ethane] or $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)_{3}$ \} characterized crystallographically (Beckett et al., 2003). Contemporaneously, we also prepared fac- $\left[\mathrm{MnBr}\left\{\mathrm{Ph}_{2} \mathrm{P}-\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{3}\right]$, (I). The identity of (I) was confirmed by satisfactory elemental and spectroscopic analysis. An attempted (prolonged) recrystallization of (I) from $\mathrm{CHCl}_{3} /$ hexane yielded a few crystals of unusual composition, viz. fac$\left[\mathrm{MnBr}_{0.3} \mathrm{Cl}_{0.7}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{3}\right]$, (II), with chloride coming from the solvent. The solid-state structure of (II) is described here.

The solid-state structure of (II) is consistent with a 70:30 mixture of fac- $\left[\mathrm{MnCl}\left(\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{3}\right]\right.$ and $f a c$ $\left[\mathrm{MnBr}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{3}\right]$ co-crystallized as a solid solution. The molecular structure of fac-[$\mathrm{MnCl}\left\{\mathrm{Ph}_{2} \mathrm{P}-\right.$ $\left.\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{3}\right]$, (III), is shown in Fig. 1. The $\mathrm{d}^{6} \mathrm{Mn}^{\mathrm{I}}$ centre in (III) is coordinated by six donor atoms in a (distorted) octahedral environment, with the three CO ligands mutually fac and the P atoms of the bidentate 1,3-bis(diphenylphosphino)propane ligand cis. The sixth coordination site is occupied by a Cl atom. The angles around Mn involving mutually cis-donor atoms and mutually trans-donor atoms lie in the ranges 83.3 (3)-96.37 (6) and $174.2(3)-175.2(3)^{\circ}$, respectively. A similar arrangement is adopted for (I), with atomic coordinates of all non-halogen atoms indistinguishable for both the Br and Cl derivatives. However, parameters

Figure 1
View of the structure of (II), showing the atom-numbering scheme. Both possibilities of the disordered halogen site have been shown and H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
associated with the halogen atoms are different. The $\mathrm{Mn}-X$ vectors differ by $3.5(5)^{\circ}$ and the $M-X$ bond lengths differ by 0.10 (1) \AA. These changes are sufficiently small to accommodate the substitution of $\left[\mathrm{MnBr}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{3}\right]$ for $\left[\mathrm{MnCl}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{3}\right]$ within the same crystal structure. The $\mathrm{Mn}-\mathrm{P}$ and $\mathrm{Mn}-\mathrm{C}$ distances are similar to those reported $[\mathrm{Mn}-\mathrm{P}=2.281$ (2)-2.4000 (11) \AA and $\mathrm{Mn}-$ $\mathrm{C}=1.77(1)-1.953(9) \AA$] for related fac species such as $\left[\mathrm{MnCl}(\mathrm{dppf})(\mathrm{CO})_{3}\right]$ (Onaka et al., 1994), $\left[\mathrm{MnCl}\left\{o-\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2^{-}}\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mathrm{CO})_{3}\right], \quad\left[\mathrm{MnCl}\left\{o-\left(\mathrm{H}_{2} \mathrm{P}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mathrm{CO})_{3}\right] \quad$ and $\quad[\mathrm{MnBr}-$ (dppe)(CO) $\left.)_{3}\right]$ (Pope \& Reid, 1999), $\left[\mathrm{MnCl}\left(\mathrm{Et}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2^{-}}\right.\right.$ $\left.\left.\mathrm{PEt}_{2}\right)(\mathrm{CO})_{3}\right]$ (Li et al., 1997), and $\left[\operatorname{MnBr}(\mathrm{dppf})(\mathrm{CO})_{3}\right]$ and $\left[\mathrm{MnBr}(\mathrm{dppe})(\mathrm{CO})_{3}\right]$ (Beckett et al., 2003). Likewise, the MnX bond lengths are not significantly different from corresponding bond lengths reported for the complexes cited above $[\mathrm{Mn}-\mathrm{Cl}=2.386$ (2)-2.406 (2) \AA and $\mathrm{Mn}-\mathrm{Br}=2.5068$ (8)2.5273 (7) \AA], although the $\mathrm{Mn}-\mathrm{Br}$ length [2.48 (13) \AA] is at the short end of the range, but this may be attributed to the substitution of Cl by Br and crystal packing force constraints. The Mn1-C3 bond trans to X is significantly shorter than the $\mathrm{Mn} 1-\mathrm{C} 1$ and $\mathrm{Mn} 1-\mathrm{C} 2$ bonds trans to P , consistent with a trans influence. The bite angle of the diphenylphosphinopropane ligand is $89.754(16)^{\circ}$ and is close to the average $\left(91.56^{\circ}\right)$ of those in previously determined structures containing this bidentate ligand (Dierke \& van Leeuwen, 1999).

Experimental

$\left[\mathrm{MnBr}\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}(\mathrm{CO})_{3}\right]$, (I), was prepared by a standard literature procedure (Angelici et al., 1963) in 76% yield (m.p. 483 K). $\nu(\mathrm{CO})\left(\mathrm{cm}^{-1}\right): 2028(s), 1961(s), 1909(s) .{ }^{31} \mathrm{P}$ NMR: $\delta-18.1$. Required for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{BrMnO}_{3} \mathrm{P}_{2}$: C 57.1, H 4.2%; found: C $56.7, \mathrm{H}$ 4.2%. A few orange crystals of the mixed-halide complex (II) were obtained after several months at 263 K from a CHCl_{3} solution of (I) layered with hexane.

Crystal data

$\left[\mathrm{MnBr}_{0.3} \mathrm{Cl}_{0.7}\left(\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{P}_{2}\right)(\mathrm{CO})_{3}\right]$
$M_{r}=600.18$
Monoclinic, $P 2_{1} / n$
$a=10.0022$ (1) \AA
$b=20.6821$ (3) A
$c=13.7320(2) \AA$
$\beta=106.090(1)^{\circ}$
$V=2729.41(6) \AA^{3}$
$Z=4$
Data collection
Bruker-Nonius KappaCCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
$T_{\text {min }}=0.659, T_{\text {max }}=0.804$
9102 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.064$
$S=1.01$
4792 reflections
338 parameters
H -atom parameters constrained

Table 1

Selected interatomic distances (\AA).

$\mathrm{Mn} 1-\mathrm{C} 3$	$1.7820(19)$	$\mathrm{Mn} 1-\mathrm{P} 1$	$2.3572(5)$
$\mathrm{Mn} 1-\mathrm{C} 1$	$1.8226(18)$	$\mathrm{Mn} 1-\mathrm{Cl} 1$	$2.384(13)$
$\mathrm{Mn} 1-\mathrm{C} 2$	$1.8317(19)$	$\mathrm{Mn} 1-\mathrm{Br} 1$	$2.481(13)$
$\mathrm{Mn} 1-\mathrm{P} 2$	$2.3495(5)$		

The structure was found to have a mixed $\mathrm{Cl} / \mathrm{Br}$ site and the occupancies were refined as free variables with displacement parameter restraints before being fixed in the final refinement. H atoms were found in a difference map, but were then positioned geometrically and included as riding, with $\mathrm{C}-\mathrm{H}=0.95$ and $0.99 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The coordinates were refined as riding on the parent atom and the occupancy and $U_{i j}$ were fixed.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and $C O L L E C T$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the EPSRC for funding the crystallographic facilities.

References

Angelici, R. J., Basolo, F. \& Poe, A. J. (1963). J. Am. Chem. Soc. 85, 2215-2219. Beckett, M. A., Brassington, D. S., Coles, S. J., Gelbrich, T., Light, M. E. \& Hursthouse, M. B. (2003). J. Organomet. Chem. 688, 174-180.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Dierke, P. \& van Leeuwen, P. W. N. M. (1999). J. Chem. Soc. Dalton Trans. pp. 1519-1529.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Li, G. Q., Feldman, J., Krause, J. A. \& Orchin, M. (1997). Polyhedron, 16, $2041-$ 2045.

metal-organic papers

Onaka, S., Haga, M., Takagi, S., Otsuka, M. \& Mizuno, K. (1994). Bull. Chem. Soc. Jpn, 67, 2440-2446.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Pope, S. J. A. \& Reid, G. (1999). J. Chem. Soc. Dalton Trans. pp. 1615-1621. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

[^0]: (C) 2004 International Union of Crystallography

