Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mark E. Light,^a* Michael B. Hursthouse,^a Michael A. Beckett^b and David S. Brassington^b

^aSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, and ^bChemistry Department, University of Wales, Bangor LL57 2UW, Wales

Correspondence e-mail: light@soton.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(C-C) = 0.003 \text{ Å}$ Disorder in main residue R factor = 0.025 wR factor = 0.064 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 $fac-[MnBr_{0.3}Cl_{0.7}{Ph_2P(CH_2)_3PPh_2}(CO)_3]$

A mixed-halogen tricarbonylmanganese(I) complex:

Crystals of the mixed halogen complex, *fac*-(bromo/chloro)-tricarbonyl[1,3-bis(diphenylphosphino)propane]manganese(I), *fac*-[MnBr_{0.3}Cl_{0.7}(C₃₀H₂₆O₃P₂)(CO)₃], were obtained from a prolonged recrystallization attempt of [MnBr{Ph₂P(CH₂)₃-PPh₂}(CO)₃] from CHCl₃/hexane solution at 263 K. Common coordinates are found for all but the halogen atoms in the disordered structure, but the Mn-*X* vectors differ by 3.5 (5)° and the *M*-*X* bond lengths differ by 0.10 (1) Å.

Received 30 July 2004 Accepted 5 August 2004 Online 13 August 2004

Comment

In a recent report, we described the synthesis and spectroscopic characterization of *mer*- or *fac*-[MnBrL₂(CO)₃] (L =triorganophosphine) complexes with three compounds {L = $\frac{1}{2}$ dppf [dppf = 1,1'-bis(diphenylphosphino)ferrocene], $\frac{1}{2}$ dppe [dppe = 1,2-bis(diphenylphosphino)ethane] or P(C₆H₄Cl-4)₃} characterized crystallographically (Beckett *et al.*, 2003). Contemporaneously, we also prepared *fac*-[MnBr{Ph₂P-(CH₂)₃PPh₂}(CO)₃], (I). The identity of (I) was confirmed by satisfactory elemental and spectroscopic analysis. An attempted (prolonged) recrystallization of (I) from CHCl₃/ hexane yielded a few crystals of unusual composition, *viz. fac*-[MnBr_{0.3}Cl_{0.7}{Ph₂P(CH₂)₃PPh₂}(CO)₃], (II), with chloride coming from the solvent. The solid-state structure of (II) is described here.

The solid-state structure of (II) is consistent with a 70:30 mixture of fac-[MnCl({Ph₂P(CH₂)₃PPh₂}(CO)₃] and fac-[MnBr{Ph₂P(CH₂)₃PPh₂}(CO)₃] co-crystallized as a solid solution. The molecular structure of fac-[MnCl{Ph₂P-(CH₂)₃PPh₂}(CO)₃], (III), is shown in Fig. 1. The d⁶ Mn¹ centre in (III) is coordinated by six donor atoms in a (distorted) octahedral environment, with the three CO ligands mutually *fac* and the P atoms of the bidentate 1,3-bis(diphenyl-phosphino)propane ligand *cis*. The sixth coordination site is occupied by a Cl atom. The angles around Mn involving mutually *cis*-donor atoms and mutually *trans*-donor atoms lie in the ranges 83.3 (3)–96.37 (6) and 174.2 (3)–175.2 (3)°, respectively. A similar arrangement is adopted for (I), with atomic coordinates of all non-halogen atoms indistinguishable for both the Br and Cl derivatives. However, parameters

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

View of the structure of (II), showing the atom-numbering scheme. Both possibilities of the disordered halogen site have been shown and H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

associated with the halogen atoms are different. The Mn-Xvectors differ by 3.5 (5)° and the M-X bond lengths differ by 0.10 (1) Å. These changes are sufficiently small to accommodate the substitution of $[MnBr{Ph_2P(CH_2)_3PPh_2}(CO)_3]$ for $[MnCl{Ph_2P(CH_2)_3PPh_2}(CO)_3]$ within the same crystal structure. The Mn-P and Mn-C distances are similar to those reported [Mn - P = 2.281 (2) - 2.4000 (11) Å and Mn -C = 1.77 (1) - 1.953 (9) Å for related fac species such as [MnCl(dppf)(CO)₃] (Onaka et al., 1994), [MnCl{o-(Ph₂P)₂- $C_{6}H_{4}(CO)_{3}$, [MnCl{ $o-(H_{2}P)_{2}C_{6}H_{4}(CO)_{3}$] and [MnBr-(dppe)(CO)₃] (Pope & Reid, 1999), [MnCl(Et₂PCH₂CH₂-PEt₂)(CO)₃] (Li et al., 1997), and [MnBr(dppf)(CO)₃] and [MnBr(dppe)(CO)₃] (Beckett et al., 2003). Likewise, the Mn-X bond lengths are not significantly different from corresponding bond lengths reported for the complexes cited above [Mn-Cl = 2.386 (2)-2.406 (2) Å and Mn-Br = 2.5068 (8)-2.5273 (7) Å], although the Mn-Br length [2.48 (13) Å] is at the short end of the range, but this may be attributed to the substitution of Cl by Br and crystal packing force constraints. The Mn1-C3 bond *trans* to X is significantly shorter than the Mn1-C1 and Mn1-C2 bonds trans to P, consistent with a trans influence. The bite angle of the diphenylphosphinopropane ligand is 89.754 (16)° and is close to the average (91.56°) of those in previously determined structures containing this bidentate ligand (Dierke & van Leeuwen, 1999).

Experimental

[MnBr{Ph₂P(CH₂)₃PPh₂}(CO)₃], (I), was prepared by a standard literature procedure (Angelici et al., 1963) in 76% yield (m.p. 483 K). ν (CO) (cm⁻¹): 2028 (s), 1961 (s), 1909 (s). ³¹P NMR: δ -18.1. Required for C₃₀H₂₆BrMnO₃P₂: C 57.1, H 4.2%; found: C 56.7, H 4.2%. A few orange crystals of the mixed-halide complex (II) were obtained after several months at 263 K from a CHCl₃ solution of (I) layered with hexane.

Crystal data

$MnBr_{0.3}Cl_{0.7}(C_{30}H_{26}O_3P_2)(CO)_3$	$D_x = 1.461 \text{ Mg m}^{-3}$
$M_r = 600.18$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 26 531
$n = 10.0022 (1) \text{\AA}$	reflections
b = 20.6821 (3) Å	$\theta = 2.9-27.5^{\circ}$
c = 13.7320 (2) Å	$\mu = 1.14 \text{ mm}^{-1}$
$\beta = 106.090 \ (1)^{\circ}$	T = 120 (2) K
V = 2729.41 (6) Å ³	Prism, orange
Z = 4	$0.40 \times 0.20 \times 0.20$ mm
Data collection	

Bruker-Nonius KappaCCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{\rm min}=0.659,\ T_{\rm max}=0.804$ 9102 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0274P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.025$	+ 2.0712P]
$wR(F^2) = 0.064$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.003$
4792 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
338 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected interatomic distances (Å).

Mn1-C3	1.7820 (19)	Mn1-P1	2.3572 (5)
Mn1-C1	1.8226 (18)	Mn1-Cl1	2.384 (13)
Mn1-C2	1.8317 (19)	Mn1-Br1	2.481 (13)
Mn1-P2	2.3495 (5)		

4792 independent reflections

4504 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.015$

 $\theta_{\rm max} = 25.0^\circ$

 $h = -11 \rightarrow 11$

 $k = -24 \rightarrow 24$

 $l=-16\rightarrow 16$

The structure was found to have a mixed Cl/Br site and the occupancies were refined as free variables with displacement parameter restraints before being fixed in the final refinement. H atoms were found in a difference map, but were then positioned geometrically and included as riding, with C-H = 0.95 and 0.99 Å, and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. The coordinates were refined as riding on the parent atom and the occupancy and U_{ii} were fixed.

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the EPSRC for funding the crystallographic facilities.

References

- Angelici, R. J., Basolo, F. & Poe, A. J. (1963). J. Am. Chem. Soc. 85, 2215-2219. Beckett, M. A., Brassington, D. S., Coles, S. J., Gelbrich, T., Light, M. E. &
- Hursthouse, M. B. (2003). J. Organomet. Chem. 688, 174-180.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Dierke, P. & van Leeuwen, P. W. N. M. (1999). J. Chem. Soc. Dalton Trans. pp. 1519-1529.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Li, G. Q., Feldman, J., Krause, J. A. & Orchin, M. (1997). Polyhedron, 16, 2041-2045.

- Onaka, S., Haga, M., Takagi, S., Otsuka, M. & Mizuno, K. (1994). Bull. Chem. Soc. Jpn, 67, 2440–2446.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pope, S. J. A. & Reid, G. (1999). J. Chem. Soc. Dalton Trans. pp. 1615–1621. Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.